Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA Cardiol ; 8(10): 979-983, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610757

RESUMO

Importance: The role of the coronary venous circulation in regulating myocardial perfusion and its potential in treating microvascular angina is unexplored. Objective: To evaluate whether an increase in coronary venous pressure modifies microvascular resistance in patients with microvascular angina. Design, Setting, and Participants: This was a blinded, sham-controlled, crossover, randomized clinical trial that enrolled participants between November 2021 and January 2023. Participants for this physiology end point study were recruited from the Cardiology Center of the University of Medicine in Mainz, Germany. Patients with moderate/severe angina pectoris (Canadian Cardiovascular Society class 2-4) due to microvascular dysfunction (as defined by the thermodilution-based index of microvascular resistance >25 mm Hg × s). Exclusion criteria were epicardial coronary disease, second- and third-degree atrioventricular block, severe valvular heart disease, cardiomyopathy, and pulmonary or kidney disease. Intervention: Inflation of an undersized balloon placed in the cardiac coronary sinus (CS), hereafter referred to as balloon and the deflated balloon in the right atrium, referred to as sham. Measurements were performed at rest and during maximal coronary hyperemia. Both patients and final assessors were blinded to the randomization sequence. Main Outcomes and Measures: Hemodynamic parameters, including aortic (Pa) and distal (Pd) coronary pressure, coronary sinus pressure (Pcs), right atrial pressure (Pra), and the mean transit time (inverse of blood flow [Tmn]), were measured. Results: A total of 20 patients (median [IQR] age, 69 [64-75] years; 11 female [55.0%]) were included in the study. Two patients (10%) had diabetes, 6 (30%) had hypercholesterolemia, 15 (75%) had hypertension, and 3 (15%) were active smokers. The inflation of the CS balloon caused a significant increase in CS pressure at rest and during hyperemia (300% and 317% increase, respectively, compared with sham, both P < .001), a decrease in hyperemic distal coronary pressure (median [IQR], sham: 92 [80-100] mm Hg; balloon: 79 [75-93] mm Hg; P = .01) and mean transit time (sham: 0.39 [0.23-0.62] s; balloon: 0.26 [0.17-0.46] s; P = .008). As a result, CS occlusion led to a decrease in both resting coronary resistance (median [IQR], sham: 59 [37-87] mm Hg × s; balloon: 42 [31-67] mm Hg × s; P = .005) and the primary end point hyperemic coronary resistance (mean [IQR], sham: 31 [23-53] mm Hg × s; balloon: 14 [8-26] mm Hg × s; P < .001). Conclusion and Relevance: Increased coronary venous pressure led to a reduction of microvascular resistances in patients with microvascular angina, a mechanism with potential implications for the therapy of this complex disease. Trial Registration: ClinicalTrials.gov Identifier: NCT05034224.


Assuntos
Hiperemia , Angina Microvascular , Humanos , Feminino , Idoso , Angina Microvascular/terapia , Angina Microvascular/complicações , Hiperemia/etiologia , Canadá , Hemodinâmica , Pressão Venosa
2.
Microorganisms ; 10(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35336140

RESUMO

The emergence of Klebsiella pneumoniae (K. pneumoniae) in German healthcare is worrying. It is not well-investigated in the veterinary world and food chains. In the current study, antibiotic susceptibility profiles of 24 K. pneumoniae strains isolated from powdered milk samples produced in Germany were investigated by a microdilution test. Next-generation sequencing (NGS) was applied to identify genomic determinants for antimicrobial resistance (AMR), virulence-associated genes and plasmids replicons. All isolates were susceptible to the majority (14/18) of tested antibiotics. Resistance to colistin, fosfomycin, chloramphenicol and piperacillin was found. The ambler class A ß-lactamase, blaSHV variants were identified in all isolates, of which blaSHV-187 was most prevalent and found in 50% of isolates. Single-nucleotide-variants of oqxA and oqxB conferring resistance to phenicol/quinolone were found in all isolates, and the oqxB17 was the most prevalent found in 46% of isolates. 67% of isolates harbored fosA genes; however, only one was fosfomycin-resistant. Two isolates harbored genes conferring resistance to colistin, despite being susceptible. The majority of identified virulome genes were iron uptake siderophores. Two enterobactins (entB, fepC), six adherence-related genes belonging to E. coli common pilus (ECP) and one secretion system (ompA gene) were found in all isolates. In contrast, yersiniabactin was found in two isolates. One ST23 strain was susceptible to all tested antibiotics, and harbored determinants discriminatory for hypervirulent strains, e.g., aerobactin, salmochelin, yersiniabactin, enterobactin and regulator of mucoid phenotype A genes that are highly associated with hypervirulent K. pneumoniae. The IncF plasmid family was found in all strains, while almost half of the isolates harbored Col440I-type plasmids and nine isolates harbored various Inc-type plasmids. The presence of K. pneumoniae carrying different resistomes and major virulent specific virulomes in powdered milk samples is alarming. This could threaten public health, particularly of neonates and infants consuming dried milk.

3.
Pathogens ; 10(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206118

RESUMO

Acinetobacter baumannii (A. baumannii) is a major cause of severe nosocomial infections worldwide. The emergence of infections associated with A. baumannii poses a significant health risk in Germany. A. baumannii is part of the ACB complex and is difficult to distinguish from other species phenotypically, necessitating its reliable identification. The current study analyzed 89 A. baumannii strains from human and non-human origins by matrix-assisted laser desorption/ionization (MALDI-TOF) and PCR detection of intrinsic blaOXA-51-like carbapenemase, blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, and ISAba 1 genes. Whole-genome sequencing (WGS) was applied for species confirmation and strain type determination. Combining the molecular detection of the intrinsic blaOXA-51-like carbapenemase gene together with MALDI-TOF with a score value of >2.300 proved to be a suitable tool for A. baumannii identification. WGS data for all of the sequenced strains confirmed the identity of all A. baumannii strains. The Pasteur scheme successfully assigned 79.7% of the strains into distinct STs, while the Oxford scheme succeeded in allocating only 42.7% of isolates. Multilocus sequence typing (MLST) analysis based on the Pasteur scheme identified 16 STs. ST/241 was the most prevalent in samples from non-human origin, whereas ST/2 was predominant in human samples. Furthermore, eight isolates of non-human origin were allocated to seven new STs (ST/1410, ST/1414, ST/1416, ST/1417, ST/1418, ST/1419, and ST/1421). Ten isolates from non-human origin could not be typed since new alleles were observed in the loci Pas_cpn60, Pas_rpoB, and Pas_gltA. MLST analysis based on the Pasteur scheme was more appropriate than the Oxford scheme for the current group of A. baumannii.

5.
Front Microbiol ; 12: 753871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069465

RESUMO

The Gram-negative, obligate intracellular bacterium Coxiella burnetii is the causative organism of the zoonosis Q fever and is known for its resistance toward various intra- and extracellular stressors. Infected ruminants such as cattle, sheep, and goats can shed the pathogen in their milk. Pasteurization of raw milk was introduced for the inactivation of C. burnetii and other milk-borne pathogens. Legal regulations for the pasteurization of milk are mostly based on recommendations of the Codex Alimentarius. As described there, C. burnetii is considered as the most heat-resistant non-spore-forming bacterial pathogen in milk and has to be reduced by at least 5 log10-steps during the pasteurization process. However, the corresponding inactivation data for C. burnetii originate from experiments performed more than 60 years ago. Recent scientific findings and the technological progress of modern pasteurization equipment indicate that C. burnetii is potentially more effectively inactivated during pasteurization than demanded in the Codex Alimentarius. In the present study, ultra-high heat-treated milk was inoculated with different C. burnetii field isolates and subsequently heat-treated in a pilot-plant pasteurizer. Kinetic inactivation data in terms of D- and z-values were determined and used for the calculation of heat-dependent log reduction. With regard to the mandatory 5 log10-step reduction of the pathogen, the efficacy of the established heat treatment regime was confirmed, and, in addition, a reduction of the pasteurization temperature seems feasible.

6.
Int J Antimicrob Agents ; 56(4): 106127, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32750418

RESUMO

OBJECTIVES: This study aimed to combine in vitro phenotyping analysis and whole-genome-sequencing (WGS) to characterise the phenotype and genetic determinants associated with intrinsic resistance in 100 clinical and non-clinical Acinetobacter baumannii strains originating from Germany and Vietnam. Moreover, it aimed to assess whether powdered milk as a food source functions as a potential reservoir of antibiotic resistance and possesses similar antimicrobial resistance (AMR) genes as in clinical strains isolated from Germany. METHODS: Antimicrobial susceptibility testing was performed using the broth microdilution method and the minimum inhibitory concentration (MIC) was determined for 18 antibiotics. The WGS data from all isolates were mapped to intrinsic genes known to be associated with phenotypic AMR. RESULTS: The highest resistance frequency was observed for chloramphenicol (100%), followed by fosfomycin (96%) and cefotaxime (95%). The lowest resistant rates were observed for colistin (3%), trimethoprim/sulfamethoxazole (17%), tigecycline (19%), and amikacin (19%). Thirty-five percent of tested strains displayed resistance to at least one of the carbapenems. Resistance to fluoroquinolones, aminoglycosides, tigecycline, penicillins, trimethoprim/sulfamethoxazole, and fourth-generation cephalosporins was determined only in human strains. About one-quarter of isolates (24%) was multidrug-resistant (MDR) and all were of human origin. Among them, 16 isolates were extensively drug resistant (XDR) and 10 from those 16 isolates showed resistance to all tested antibiotics except colistin. In silico detection of intrinsic AMR genes revealed the presence of 36 ß-lactamases and 24 non-ß-lactamase resistance genes. Two colistin-resistant and 10 ertapenem-resistant strains were isolated from powdered milk produced in Germany. Thirty-eight AMR genes associated with resistance to antibiotics were found in isolates recovered from milk powder. Several resistance mechanisms towards many classes of antibiotics existed in A. baumannii including ß-lactamases, multidrug efflux pumps and aminoglycoside-modifying enzymes. CONCLUSION: The use of WGS for routine public health surveillance is a reliable method for the rapid detection of emerging AMR in A. baumannii isolates. Milk powder poses a risk to contain MDR Acinetobacter strains or resistance genes in Germany.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Aminoglicosídeos/farmacologia , Animais , Alemanha , Humanos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Leite/microbiologia , Vietnã , Sequenciamento Completo do Genoma , beta-Lactamas/farmacologia
7.
Front Microbiol ; 9: 536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636733

RESUMO

Forty-seven Acinetobacter spp. isolates from milk powder obtained from a powdered milk producer in Germany were investigated for their antibiotic resistance susceptibilities, in order to assess whether strains from food harbor multiple antibiotic resistances and whether the food route is important for dissemination of resistance genes. The strains were identified by 16S rRNA and rpoB gene sequencing, as well as by whole genome sequencing of selected isolates and their in silico DNA-DNA hybridization (DDH). Furthermore, they were genotyped by rep-PCR together with reference strains of pan-European groups I, II, and III strains of Acinetobacter baumannii. Of the 47 strains, 42 were identified as A. baumannii, 4 as Acinetobacter Pittii, and 1 as Acinetobacter calcoaceticus based on 16S rRNA gene sequencing. In silico DDH with the genome sequence data of selected strains and rpoB gene sequencing data suggested that the five non-A. baumannii strains all belonged to A. pittii, suggesting that the rpoB gene is more reliable than the 16S rRNA gene for species level identification in this genus. Rep-PCR genotyping of the A. baumannii strains showed that these could be grouped into four groups, and that some strains clustered together with reference strains of pan-European clinical group II and III strains. All strains in this study were intrinsically resistant toward chloramphenicol and oxacillin, but susceptible toward tetracycline, tobramycin, erythromycin, and ciprofloxacin. For cefotaxime, 43 strains (91.5%) were intermediate and 3 strains (6.4%) resistant, while 3 (6.4%) and 21 (44.7%) strains exhibited resistance to cefepime and streptomycin, respectively. Forty-six (97.9%) strains were susceptible to amikacin and ampicillin-sulbactam. Therefore, the strains in this study were generally not resistant to the clinically relevant antibiotics, especially tobramycin, ciprofloxacin, cefepime, and meropenem, suggesting that the food route probably poses only a low risk for multidrug resistant Acinetobacter strains or resistance genes.

8.
J Food Prot ; 76(7): 1194-201, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23834794

RESUMO

The role of Mycobacterium avium subsp. paratuberculosis (MAP) in Crohn's disease in humans has been debated for many years. Milk and milk products have been suggested as possible vectors for transmission since the beginning of this debate, whereas recent publications show that slaughtered cattle and their carcasses, meat, and organs can also serve as reservoirs for MAP transmission. The objective of this study was to generate heat-inactivation data for MAP during the cooking of hamburger patties. Hamburger patties of lean ground beef weighing 70 and 50 g were cooked for 6, 5, 4, 3, and 2 min, which were sterilized by irradiation and spiked with three different MAP strains at levels between 10² and 106 CFU/ml. Single-sided cooking with one flip was applied, and the temperatures within the patties were recorded by seven thermocouples. Counting of the surviving bacteria was performed by direct plating onto Herrold's egg yolk medium and a three-vial most-probable-number method by using modified Dubos medium. There was considerable variability in temperature throughout the patties during frying. In addition, the log reduction in MAP numbers showed strong variations. In patties weighing 70 g, considerable bacterial reduction of 4 log or larger could only be achieved after 6 min of cooking. For all other cooking times, the bacterial reduction was less than 2 log. Patties weighing 50 g showed a 5-log or larger reduction after cooking times of 5 and 6 min. To determine the inactivation kinetics, a log-linear regression model was used, showing a constant decrease of MAP numbers over cooking time.


Assuntos
Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Produtos da Carne/microbiologia , Viabilidade Microbiana , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Animais , Bovinos , Contagem de Colônia Microbiana , Culinária , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/veterinária , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Temperatura Alta , Humanos , Fatores de Tempo
9.
J Food Prot ; 59(11): 1223-1226, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31195438

RESUMO

A biosensor assay based on biospecific interaction analysis (BIA) was compared with already existing methods for detection of sulphamethazine (SMZ) residues in milk. Microbial inhibitor and receptor assays, an enzyme-linked immunosorbent assay (ELISA), high-pressure liquid chromatography (HPLC), and BIA were used to analyze milk samples from SMZ-treated cows. The results of the commercially available tests (Delvotest SP Special, BR-test Blue Star, Charm II test) were in agreement with the claimed sensitivity of the respective assays. The agreement between the quantitative methods (ELISA, HPLC, BIA) varied. The microbial inhibitor assays and BIA were also used to screen 330 tanker milk samples, All samples were negative in the inhibitor tests, whereas the BIA indicated the occurrence of less than 0.9 µg of SMZ per kg of milk in 5 samples and 1.5 ± 0.6 µg/kg in one sample, HPLC indicated the presence of SMZ in the latter sample, although the concentration was below the detection limit of the method. The advantages offered by the BIA: no sample preparation, high sensitivity, and rapid, fully automated analysis in real time make the technology an interesting alternative to existing screening methods within future food-quality control systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...